Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Subtelomeres are imperfect repeats adjacent to telomeres that are repressed by heterochromatin. Although essential for genome integrity, their repetitive nature has thwarted dissection of local heterochromatin assembly and maintenance mechanisms. Here, we engineeredSchizosaccharomyces pombestrains carrying fluorescent reporters at a single subtelomere. We find that subtelomeric heterochromatin is organized into discrete subdomains that nucleate at telomere-proximal and cryptic internal sites. Telomere-proximal regions depend on canonical shelterin or RNA interference nucleation pathways, while telomere-distal regions require nucleosome remodelers, histone chaperones, and boundary-associated factors. Using multi-generational live imaging and targeted perturbations, we show that subtelomeric subdomains display position-specific, clonally variable silencing across a spectrum of robust to fragile epigenetic states. This clonal variegation is also induced by naturally occurring subtelomeric structural variants. These findings demonstrate that subtelomeric heterochromatin maintenance is not uniform but rather governed by local chromatin context and architecture.more » « lessFree, publicly-accessible full text available September 25, 2026
- 
            ‘Disintegration’—the reversal of transposon DNA integration at a target site—is regarded as an abortive off-pathway reaction. Here, we challenge this view with a biochemical investigation of the mechanism of protospacer insertion, which is mechanistically analogous to DNA transposition, by the Streptococcus pyogenes Cas1-Cas2 complex. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete protospacer insertions. The second insertion event is most often accompanied by the disintegration of the first, mediated either by the 3′-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.more » « less
- 
            Achilefu, Samuel; Raghavachari, Ramesh (Ed.)Invented in 2010, NanoCluster Beacons (NCBs) (1) are an emerging class of turn-on probes that show unprecedented capabilities in single-nucleotide polymorphism (2) and DNA methylation (3) detection. As the activation colors of NCBs can be tuned by a near-by, guanine-rich activator strand, NCBs are versatile, multicolor probes suitable for multiplexed detection at low cost. Whereas a variety of NCB designs have been explored and reported, further diversification and optimization of NCBs require a full scan of the ligand composition space. However, the current methods rely on microarray and multi-well plate selection, which only screen tens to hundreds of activator sequences (4, 5). Here we take advantage of the next-generation-sequencing (NGS) platform for high-throughput, large-scale selection of activator strands. We first generated a ~104 activator sequence library on the Illumina MiSeq chip. Hybridizing this activator sequence library with a common nucleation sequence (which carried a nonfluorescent silver cluster) resulted in hundreds of MiSeq chip images with millions of bright spots (i.e. light-up polonies) of various intensities and colors. With a method termed Chip-Hybridized Associated Mapping Platform (CHAMP) (6), we were able to map these bright spots to the original DNA sequencing map, thus recovering the activator sequence behind each bright spot. After assigning an “activation score” to each “light-up polony”, we used a computational algorithm to select the best activator strands and validate these strands using the traditional in-solution preparation and fluorometer measurement method. By exploring a vast ligand composition space and observing the corresponding activation behaviors of silver clusters, we aim to elucidate the design rules of NCBs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
